208. Implement Trie (Prefix Tree)

Photo by Leyre on Unsplash
Photo by Leyre on Unsplash
This problem is asking us to implement a very basic Trie.

Problem

trie (pronounced as “try”) or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.

Implement the Trie class:

  • Trie() Initializes the trie object.
  • void insert(String word) Inserts the string word into the trie.
  • boolean search(String word) Returns true if the string word is in the trie (i.e., was inserted before), and false otherwise.
  • boolean startsWith(String prefix) Returns true if there is a previously inserted string word that has the prefix prefix, and false otherwise.

Example 1:

Input
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
Output
[null, null, true, false, true, null, true]

Explanation
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple");   // return True
trie.search("app");     // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app");     // return True

Constraints:

  • 1 <= word.length, prefix.length <= 2000
  • word and prefix consist only of lowercase English letters.
  • At most 3 * 104 calls in total will be made to insertsearch, and startsWith.

Solution

This problem is asking us to implement a very basic Trie.

Trie

class Trie {
    class TrieNode {
        private Map<Character, TrieNode> children = new HashMap<>();
        private boolean terminates = false;

        TrieNode() {
        }

        void insert(String word) {
            if (word == null || word.isEmpty()) return;

            char firstChar = word.charAt(0);
            TrieNode child = children.get(firstChar);
            if (child == null) {
                child = new TrieNode();
                children.put(firstChar, child);
            }

            if (word.length() > 1) {
                child.insert(word.substring(1));
            } else {
                child.terminates = true;
            }
        }

        TrieNode getChild(char c) {
            return children.get(c);
        }

        boolean terminates() {
            return terminates;
        }
    }

    private TrieNode root = new TrieNode();

    public Trie() {
    }
    
    public void insert(String word) {
        root.insert(word);
    }
    
    public boolean search(String word) {
        return search(word, true);
    }
    
    public boolean startsWith(String prefix) {
        return search(prefix, false);
    }

    private boolean search(String word, boolean exact) {
        TrieNode lastNode = root;
        for (int i = 0; i < word.length(); i++) {
            char c = word.charAt(i);
            lastNode = lastNode.getChild(c);
            if (lastNode == null) return false;
        }
        return !exact || lastNode.terminates();
    }
}

Reference

Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like
Photo by Oladimeji Odunsi on Unsplash
Read More

72. Edit Distance

When solving this problem, we must first observe how word1 becomes word2. Taking Example1 as an example, the lower left figure lists the distance from “horse” to “ros”.
Read More
Photo by Guilherme Stecanella on Unsplash
Read More

62. Unique Paths

This problem asks us to calculate the total number of all possible paths from the top-left corner to the bottom-right corner. We can observe that to go from the top-left corner to the bottom-right corner, the robot can only go right or down.
Read More