Problem
A trie (pronounced as “try”) or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.void insert(String word)
Inserts the stringword
into the trie.boolean search(String word)
Returnstrue
if the stringword
is in the trie (i.e., was inserted before), andfalse
otherwise.boolean startsWith(String prefix)
Returnstrue
if there is a previously inserted stringword
that has the prefixprefix
, andfalse
otherwise.
Example 1:
Input ["Trie", "insert", "search", "search", "startsWith", "insert", "search"] [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]] Output [null, null, true, false, true, null, true] Explanation Trie trie = new Trie(); trie.insert("apple"); trie.search("apple"); // return True trie.search("app"); // return False trie.startsWith("app"); // return True trie.insert("app"); trie.search("app"); // return True
Constraints:
1 <= word.length, prefix.length <= 2000
word
andprefix
consist only of lowercase English letters.- At most
3 * 104
calls in total will be made toinsert
,search
, andstartsWith
.
Solution
This problem is asking us to implement a very basic Trie.
Trie
class Trie { class TrieNode { private Map<Character, TrieNode> children = new HashMap<>(); private boolean terminates = false; TrieNode() { } void insert(String word) { if (word == null || word.isEmpty()) return; char firstChar = word.charAt(0); TrieNode child = children.get(firstChar); if (child == null) { child = new TrieNode(); children.put(firstChar, child); } if (word.length() > 1) { child.insert(word.substring(1)); } else { child.terminates = true; } } TrieNode getChild(char c) { return children.get(c); } boolean terminates() { return terminates; } } private TrieNode root = new TrieNode(); public Trie() { } public void insert(String word) { root.insert(word); } public boolean search(String word) { return search(word, true); } public boolean startsWith(String prefix) { return search(prefix, false); } private boolean search(String word, boolean exact) { TrieNode lastNode = root; for (int i = 0; i < word.length(); i++) { char c = word.charAt(i); lastNode = lastNode.getChild(c); if (lastNode == null) return false; } return !exact || lastNode.terminates(); } }
Reference
- 208. Implement Trie (Prefix Tree), LeetCode.
- 208. Implement Trie (Prefix Tree), LeetCode Solutions.