208. Implement Trie (Prefix Tree)

Photo by Leyre on Unsplash
Photo by Leyre on Unsplash
此題就是要我們實作一個很基本的 Trie。
Table of Contents
  1. Problem
  2. Solution
    1. Trie
  3. 參考

Problem

trie (pronounced as “try”) or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.

Implement the Trie class:

  • Trie() Initializes the trie object.
  • void insert(String word) Inserts the string word into the trie.
  • boolean search(String word) Returns true if the string word is in the trie (i.e., was inserted before), and false otherwise.
  • boolean startsWith(String prefix) Returns true if there is a previously inserted string word that has the prefix prefix, and false otherwise.

Example 1:

Input
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
Output
[null, null, true, false, true, null, true]

Explanation
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple");   // return True
trie.search("app");     // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app");     // return True

Constraints:

  • 1 <= word.length, prefix.length <= 2000
  • word and prefix consist only of lowercase English letters.
  • At most 3 * 104 calls in total will be made to insertsearch, and startsWith.

Solution

此題就是要我們實作一個很基本的 Trie。

Trie

class Trie {
    class TrieNode {
        private Map<Character, TrieNode> children = new HashMap<>();
        private boolean terminates = false;

        TrieNode() {
        }

        void insert(String word) {
            if (word == null || word.isEmpty()) return;

            char firstChar = word.charAt(0);
            TrieNode child = children.get(firstChar);
            if (child == null) {
                child = new TrieNode();
                children.put(firstChar, child);
            }

            if (word.length() > 1) {
                child.insert(word.substring(1));
            } else {
                child.terminates = true;
            }
        }

        TrieNode getChild(char c) {
            return children.get(c);
        }

        boolean terminates() {
            return terminates;
        }
    }

    private TrieNode root = new TrieNode();

    public Trie() {
    }
    
    public void insert(String word) {
        root.insert(word);
    }
    
    public boolean search(String word) {
        return search(word, true);
    }
    
    public boolean startsWith(String prefix) {
        return search(prefix, false);
    }

    private boolean search(String word, boolean exact) {
        TrieNode lastNode = root;
        for (int i = 0; i < word.length(); i++) {
            char c = word.charAt(i);
            lastNode = lastNode.getChild(c);
            if (lastNode == null) return false;
        }
        return !exact || lastNode.terminates();
    }
}

參考

發佈留言

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *

You May Also Like
Photo by Oladimeji Odunsi on Unsplash
Read More

72. Edit Distance

在解此題時,我們要先觀察 word1 如何變成 word2。以 Example1 為例,左下圖列出 “horse” 轉變成 “ros” 的 distance。表中,縱軸表示 “horse”,而橫軸表示 “ros”。
Read More
Photo by Diana Parkhouse on Unsplash
Read More

1048. Longest String Chain

此題中,wordA 是 wordB 的 predecessor 指只要插入一個 letter 到 wordA,那就會使得它和 wordB 一樣。然而,插入一個 letter 到一個地方,就要考慮 26 種字母。這使得整體的複雜度上升。
Read More
Photo by Bogdan Farca on Unsplash
Read More

39. Combination Sum

此題要我們列出所有可能的組合,所以我們可能用 backtracking 來找。但是,我們必須避免找到相同的組合。當兩個組合裡的數字和個數都依一樣,但順序不一樣時,他們依然是相同的組合。
Read More